א ♦ ≶ א 🔅 🖌

Sustainable Engineering Worldwide

Using Lidar to understand the impact of wind shear on performance

Richard Boddington Director of Measurement and Analysis 3 July 2012

SgurrEnergy

To look at the impact of wind flow on an operational power curve on a moderately complex site.

- 1. Wind characteristics that impact on power curves.
- 2. A moderately complex site.
- 3. Wind shear measurement using Galion Lidar.
- 4. Relationship between wind shear and power curve.
- 5. Impact on power output.

Underperformance in Operational Wind Farms (wind flow related)

Prediction errors

- 1. Low hub height wind speeds.
- 2. Incorrect wind shear extrapolation.
- 3. Over-estimation of WTG wake recovery.

Performance issues

- 1. High wind shear.
- 2. Wind veer.
- 3. High turbulence levels.
- 4. Flow inclination.
- 5. Off-axis WTG alignment.

Case study - Wind Shear

- A WTG was identified with reduced production within a wind farm in a medium complex terrain site in Southern Norway.
- Site reference mast situated at distance of 250m from WTG, elevation difference of approximately 13m.
- Uncertainty in the source of discrepancy between the reference power curve and mast measured power curve; WTG wear and tear or spatial variation of the wind flow.

Elevation profile across the prevailing wind direction, marker denotes turbine location.

Galion Placement

0-

Measurement Campaign

- The scan geometry consists of 12 beams, incremented at 30° intervals in azimuth and elevated to an angle of 25°.
- By convention the Galion's negative doppler shift values denote motion towards the unit.
- Sinusoidal fitting of the Doppler values to obtain upwind flow velocity is then conducted with the four most negative of doppler beams.

Site Conditions

0

Wind Rose For Campaign Period

Data Records		Wind Direction Sector							
(10 minute values)		0	45	90	135	180	225	270	315
Wind Speed Bin	0-4m/s	24	12	40	14	2	87	114	116
	4-8m/s	57	29	193	8	11	175	1197	824
	8-12m/s	22	40	233	20	89	285	898	575
	12-16m/s			57	2	27	100	182	144
	16-20m/s			18				34	17
	20-24m/s							3	1

Results

Results

Measured Power Curve by 45° Direction Sector

• General trend of decreased power output in the highest shear bins, especially noticeable in direction sectors 180 and 135.

0

Power Output dependence on wind shear coefficient - %

0

Power Output dependence on wind shear coefficient - kW

Results

0

AEP within 6-10 m/s constraints

- Difference between actual power output compared with reference power curve.
- Decreasing expected power production for increasing wind shear.

Conclusions

- There is a clear trend between increased wind shear and power curve "smoothing".
- In direction sectors with high wind shear (>0.4), this can result in performance reductions of more than 10% in AEP (conservative estimate!)
- Use of Galion Lidar allows measurement of wind shear across the entire vertical extent of the rotor, not just to hub height.
- Flexible scan geometry allows free stream wind measurements in all directions.
- Better understanding of real site performance allows better asset management and wind farm forecasting.
- Thank you to our colleagues at Agder Energi who made these measurements

Thank you

Any Questions?

richard.boddington@sgurrenergy.com +44 141 227 1700

www.sgurrenergy.com

0